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Principal component analysis (PCA) was used to identify the main sources of variation in the Fourier
transform infrared (FT-IR) spectra of 329 wines of various styles. The FT-IR spectra were gathered
using a specialized WineScan instrument. The main sources of variation included the reducing sugar
and alcohol content of the samples, as well as the stage of fermentation and the maturation period
of the wines. The implications of the variation between the different wine styles for the design of
calibration models with accurate predictive abilities were investigated using glycerol calibration in
wine as a model system. PCA enabled the identification and interpretation of samples that were
poorly predicted by the calibration models, as well as the detection of individual samples in the sample
set that had atypical spectra (i.e., outlier samples). The Soft Independent Modeling of Class Analogy
(SIMCA) approach was used to establish a model for the classification of the outlier samples. A
glycerol calibration for wine was developed (reducing sugar content < 30 g/L, alcohol > 8% v/v) with
satisfactory predictive ability (SEP ) 0.40 g/L). The RPD value (ratio of the standard deviation of the
data to the standard error of prediction) was 5.6, indicating that the calibration is suitable for
quantification purposes. A calibration for glycerol in special late harvest and noble late harvest wines
(RS 31-147 g/L, alcohol > 11.6% v/v) with a prediction error SECV ) 0.65 g/L, was also established.
This study yielded an analytical strategy that combined the careful design of calibration sets with
measures that facilitated the early detection and interpretation of poorly predicted samples and outlier
samples in a sample set. The strategy provided a powerful means of quality control, which is necessary
for the generation of accurate prediction data and therefore for the successful implementation of
FT-IR in the routine analytical laboratory.
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INTRODUCTION

The potential of Fourier transform infrared spectroscopy (FT-
IR) as a powerful analytical tool in enology has been recognized
for many years. The technology is based on the measurement

of the frequencies of the vibrations of chemical bonds in
functional groups such as C-C, C-H, O-H, CdO and N-H,
upon absorption of radiation in the mid infrared (IR) region
(1). The IR region is usually defined as ranging from 4000 to
400 cm-1, or in terms of nanometers, from 2500 to 2.5× 104

nm (1). The measured frequencies are processed through a series
of mathematical procedures (which include Fourier transforma-
tion) to an absorbance spectrum, which in turn is correlated to
the actual concentrations of the relevant components in the
sample matrix through a calibration process that involves
multivariate statistical procedures such as principal component
analysis (PCA), principal component regression (PCR) and
partial least squares (PLS) regression (2, 3). Recent improve-
ments in IR instrumentation (4) and the development of versatile
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and innovative software applications designed specifically for
wine analysis (13) have optimized this technology. Currently,
multicomponent analytical instruments with impressive perfor-
mance data in terms of accuracy, precision, and speed of analysis
are available. The evaluation of the use of one such an
instrument, the WineScan FT120 (13) has recently received
much attention (5-8).

Glycerol (CH2OH-CHOH-CH2OH) is quantitatively a
major component of wine, and its determination at various stages
of the winemaking process provides important information
regarding issues that are directly or indirectly related to quality
control (9-11). The application of FT-IR for quantifying
glycerol in dry wine has been tested, and standard error of
prediction (SEP) values of 0.49 g/L (5) and 1.32 g/L (6) have
been reported. In addition, a ready-to-use calibration for glycerol
in dry finished wine (SEP) 1.13 g/L) was recently made
commercially available (12). On the basis of theoretical
considerations (and assuming a normal probability distribution)
it should be kept in mind that the prediction error of only ca.
68% of the samples in a sample set will lie within( one times
the SEP value, whereas the remaining ca. 32% of the samples
will have prediction errors that can be expected to be larger
than this interval. The evaluation of calibration models based
on regression statistics alone, therefore, often presents an over
optimistic view of the predictive abilities of a model and
provides limited information in terms of: (i) sample types for
which the model would not be suitable; (ii) identifying poorly
predicted samples in the sample set; and (iii) detecting and
interpreting extreme deviating samples, for example, the so-
called “outlier samples” in the sample set, if present (3). These
aspects are of particular importance in routine analysis of
commercial wines, where wide variation in terms of style,
vintage, cultivar, geographic origin, chemical composition,
maturation periods, and process technologies are encountered.
It is to be expected that this variation will be reflected in the
spectral properties of the samples and that some of these sources
of variation will have major implications for the accuracy of
prediction of calibration models. For the successful application
of FT-IR in the analytical laboratory, accurate prediction data
are required. A strategy aimed both at the development of robust
calibration models encompassing this variation, as well as

implementing quality control measures that enable the early
detection and interpretation (where possible) of poorly predicted
samples and outlier samples, is therefore required.

In this study, the WineScan FT120 instrument was used to
generate the FT-IR spectra of a large number of wines of various
styles, and PCA was used as a tool to identify the main sources
of variation between the wines. The implications of this variation
for the accuracy of prediction, and hence the design of
calibration sets, were evaluated using glycerol calibration in
wine as a model system. The PCA results were also used to
establish a classification model for the early detection and
interpretation of outlier samples in the sample set by using the
Soft Independent Modeling of Class Analogy (SIMCA) ap-
proach.

MATERIALS AND METHODS

Wine Samples.The sample set consisted of bottled commercial
South African red wines and white wines (n ) 290), as well as young
wines (both red wines and white wines,n ) 39) that were close to the
end of fermentation, but not yet bottled (Table 1). Collectively, the
wines in the sample set represented more than 13 different cultivars
and 22 different wine styles, as well as wide variation in terms of
process technologies, geographic origin, vintage, and maturation periods.
The majority of the commercial wines (n ) 263) were of vintages from
1998 to 2002. A subset of red wines (n ) 27) were of vintages older
than 1998 and contained samples that had undergone three or more
years maturation at the time of analysis.

FT-IR Spectral Measurements.Commercial wine samples were
scanned upon reception without any further sample preparation. The
young wines that appeared turbid were filtered with a Filtration Unit
(type 79500, Foss Electric, Denmark) using filter paper circles graded
at 20-25 µm and with diameter 185 mm (Schleicher & Schuell,
reference number 10312714), to avoid disturbances in the optical path
length of the cuvette. A WineScan FT120 instrument (Foss Electric,
Denmark) that employs a Michelson interferometer was used to generate
the FT-IR spectra. Because the WineScan FT120 is a specialized
instrument designed specifically to generate quantitative data against
the background matrix of wine, the number of scans generated per
sample, the selection of wavenumbers, and the processing of the spectra
have been pre-selected by the manufacturer and are not accessible to
change by the user. Samples (7 mL) were pumped through the CaF2-
lined cuvette (optical path length 37µm), which is housed in the heater
unit of the instrument. The temperature of the samples are brought to

Table 1. Wines Used for FT-IR Spectroscopy (n ) 329)

style/descriptiona no.of wines

dry white, maximum sugar 4 g/La

Chenin blanc, Sauvignon blanc, Chardonnay, blends, maximum 2 years aging, unwoodedb wines 23
woodedb wines 63

dry red, maximum sugar 4 g/La

Shiraz, Pinotage, Merlot, Cabernet Sauvignon, maximum 2 years aging 101
various blends, 3−6 years aging 27
single cultivars of Malbec, Pinot Noir, Petit Verdot 9

off-dry white, sugar 4.1−12 g/La

Chenin blanc, Sauvignon blanc, unwoodedb andwoodedb styles 17

sweet wines (Semillon, Gewurztraminer, Weisser Riesling and blends)
special late harvest, maximum sugar content 50 g/La 15
noble late harvest, minimum sugar content 50 g/La 28

Blanc De Noir, maximum sugar content 30 g/La

Pinotage, red muscadel 5
low alcohol wines, alcohol less than 10% v/v, sugar content specifieda 2

Chenin blanc and blend
young winesc 39
total 329

a Specified according to the South African National Wine Show Association. b Unwooded is defined as “no noticeable wood character”; wooded as “noticeable wood
character”. c Young wines close to the end of fermentation, but not yet bottled.
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exactly 40°C before analysis. Samples were scanned from 5011 to
929 cm-1 at 4 cm-1 intervals (i.e, 1056 data points per spectrum), which
includes a small section of the near-IR region. The frequencies of the
IR beam transmitted by a sample were recorded at the detector and
used to generate an interferogram that is calculated from a total of 20
scans before being processed by Fourier transformation to generate a
single beam transmittance spectrum. Background absorbance in the wine
sample (which includes the absorbance of water) is corrected through
the use of a Foss Zero Liquid S-6060 (13), which is scanned prior to
the wine sample. The single beam transmittance spectrum of the zero
liquid is stored on the computer of the instrument, and the ratio of the
sample spectrum to the zero liquid spectrum, at each recorded data
point, is used to generate the final transmittance spectrum. Absolute
repeatability of the spectral measurements is calculated as the standard
deviation of the transmittance, at each recorded data point, of the 20
replicate scans of the same sample (13). The transmittance spectra were
finally converted into linearized absorbance spectra through a series
of mathematical procedures. An aqueous solution of glycerol (10 g/L,
analytical grade, BDH) was scanned under the same conditions as the
wine samples.

Multivariate Data Analysis. Principal Component Analysis(PCA).
FT-IR spectra were exported to the Unscrambler Software (version 6.11,
Camo ASA, Trondheim, Norway) for the purpose of PCA. Duplicate
spectra were averaged. The complete data set, defined by the variables
in the columns (in this study, 1056 wavenumbers) and the samples in
the rows, was autoscaled through mean centering by column. PCA
models the maximum directions of variation in a data set by projecting
the objects (in this study, the FT-IR spectra) as a swarm of points in
a space defined by principal components (PC’s). Each PC is a linear
function of a number of original variables, resulting in a reduction of
the original number of variables. PC’s describe, in decreasing order,
the most variation among the objects, and because they are calculated
to be orthogonal to one another, each PC can be interpreted indepen-
dently. This permits an overview of the data structure by revealing
relationships between the objects as well as the detection of deviating
objects. To find these sources of variation, the original data matrix,
defined by X(n,m), is decomposed into the object space, the variable
space, and the error matrix. The latter represents the variation not
explained by the extracted PC’s and is dependent on the problem
definition. The algorithm describing this decomposition is presented
as

whereX is the independent variable matrix,T is the scores matrix,P
is the loadings matrix,E is the error matrix,n is the number of objects,
m is the number of variables, andk is the number of PC’s used (2, 3).

Partial Least Squares Regression1(PLS1). PLS1 is a bilinear
regression modeling method where the originalx variables are projected
onto a smaller number of PLS components (3). These components,
also referred to as “latent variables” or “factors”, are calculated
according to the same mathematical procedures as PC’s, but the data
in the Y-matrix are incorporated in the calculation. The regression
establishes the relationship between theX-matrix and theY-matrix (in
this study, the reference data for glycerol), with the objective to predict
the y variables by using the most relevant PLS components. The
relationship between they and x variables can be described by the
polynomial

wherey is the dependent variable,b0-bn are the regression coefficients
(b0 is the intercept) and x1-xn represent the absorbance at the selected
wavenumbers (see section Wavenumber selection).

SIMCA. Detection and classification of outlier samples were done
using the SIMCA application of the Unscrambler Software (version
6.11, Camo ASA, Trondheim, Norway). Two training sets, “red wine”
(n ) 30) and “white wine” (n ) 30), were modeled using separate
PCA models. The samples used in the training sets were randomly
selected. The test set consisted of the spectral outliers (n ) 6). Class
membership was defined at a significance level of 5%.

Wavenumber Selection.With the WineScan FT120 instrument, a
maximum of 15 “filters” (wavenumbers or small groups of wavenum-
bers) can be defined for calibration purposes. The wavenumbers at
which the correlation between the measured absorbance and the
corresponding reference values for glycerol (as determined with the
enzymatic method, see Reference Methods) was the highest were
selected by using the Advanced Performance Software Module version
2.1.0, which is an extension of the basic software of the WineScan
FT120 instrument. To exclude noise being introduced into the spectral
data, only three regions, 964-1543 cm-1, 1716-2732 cm-1, and 2434-
2970 cm-1 are made available for wavenumber selection. Possible
overfitting of the calibration models (which introduces noise and
uninformative variation into the calibration) was evaluated by deselect-
ing the filters, explaining a very low percentage of variation in a sample
set in a stepwise manner, using the standard error of cross validation
(SECV) values as guide. Here the objective was to find the lowest
number of filters and the lowest possible SECV value for a particular
calibration model.

Evaluation of the Performance of Calibration Sets.The statistical
indicators for evaluating the performance of the calibration models were
calculated using the Advanced Performance Software Module provided
with the WineScan FT120 instrument and included bias, SECV, and
SEP. Cross validation was automatically done by the software and
involved keeping out successive groups of samples from the calibration
set (10% of the total number of calibration samples at a time), and
using these subsets for prediction, until all samples have been kept out
once. The selection strategy for cross validation purposes have been
set by the manufacturer and are not accessible to change by the user of
the instrument. Bias gives an indication of a systematic error in the
predictive values (3), and it was calculated as the average of the
residuals (residuals being the difference between the reference values
and the predicted values). The accuracy of the predictive ability of the
calibration model, relative to the reference data, was expressed as SECV
when based on the calibration samples and using cross validation as
explained before, and as SEP when based on independent validation
sets. The calculations of these indicators are standard statistical
procedures and several authors describe these procedures (2, 3, 13).
The RPD value (ratio of the standard deviation of the data to the
standard error of prediction) was used to evaluate the predictive ability
of the calibration models (19, 20). It has been proposed that an RPD
value less than 3 indicates that the calibration model is unsuitable for
quantification, a value between 3 and 5 is suitable for screening, while
a value greater than 5 is suitable for quantification (20).

Reference Methods.Glycerol Determinations. Glycerol was assayed
with the Boehringer Mannheim test kit (catalog number 148270). The
total assay volume was scaled down to 100µL, and duplicate
determinations for each sample were carried out in microtiter plates
(Sterilin, catalog number 612F96), and readings were taken at 340 nm,
using aµQuant spectrophotometer (Bio-Tek Instruments, Winooski,
VT). The accuracy of the reference method was expressed as the
standard error of laboratory (SEL) and calculated as

wherey1 andy2 are the results of duplicate determinations andn is the
number of samples.

Routine Wine Analysis.Reference data for alcohol, residual sugar
(RS), titratable acidity (TA) and volatile acidity (VA) for the com-
mercial wines were those officially approved by the South African Wine
and Spirit Board upon certification of the wines. Corresponding data
for the young wines were obtained by using the WineScan FT120
instrument and the commercial calibrations for these components (13).

RESULTS AND DISCUSSION

Analysis of FT-IR Spectra. A FT-IR spectrum of a wine
provides the collective absorbance of all the IR-active compo-
nents present in the sample. The contribution of the absorbance
of water to the FT-IR spectra was significant in two wavenumber

X(n,m)) T(n,k)P(k,m)T + E(n,m)

y ) b0 + b1x1 + b2x2 + bnxn

SEL ) x∑ (y1 - y2)
2

2n

3728 J. Agric. Food Chem., Vol. 52, No. 12, 2004 Nieuwoudt et al.



regions, 3626-2970 cm-1 and 1716-1543 cm-1, respectively
(Figure 1a). These regions were typically broad and covered
several hundreds of wavenumbers. The absolute repeatability
of the FT-IR spectra was poor in these regions (data not shown),
and these areas are known to contribute considerable noise in
the spectra. The FT-IR spectrum of the aqueous glycerol solution
showed prominent absorbance peaks in the 1600-929 cm-1

region. Some characteristic features of the FT-IR spectrum of
glycerol that were observed (see insertFigure 1a) included the
peak at 1462-1458 cm-1 (representing the H-C bend) and the
peak at 1100-1075 cm-1 (representing the C-O stretch) (14).
The major infrared band associated with the-OH group is
located at 3350( 50 cm-1 (14). In a wine matrix, where water
is abundant, the absorbance of the-OH group would not be
expected to be very useful for the purpose of developing a
calibration for glycerol. Visual inspection of the FT-IR spectrum
of a dry white wine indicated that the region from 5011 to 3630
cm-1 showed little variation in absorbance, whereas prominent
peaks were present in the region from 1600 to 929 cm-1 (Figure
1a). The information in the latter region, referred to as the
“fingerprint” area, is particularly useful in molecular absorption
spectroscopy, because many different IR bands, including those

corresponding to the vibrations of the C-O, C-C, C-H, and
C-N bonds occur in this region (1).

Distinct variation between the FT-IR spectra of wines of
various styles was observed in the region from 1229 to 929
cm-1, as illustrated by the spectra of the dry white, low alcohol,
and noble late harvest wines (Figure 1b). Collectively, more
than 85% of the variation in the glycerol content of the wine
samples could be correlated to the absorbance at the filters
shown inFigure 1b. The absorbance at filters 1060-1057 cm-1

and 1084 cm-1 corresponded to the C-O stretch, respectively
(14).

PCA Modeling. (i) PCA Modeling of the Complete Data
Matrix. In the explorative stages of PCA, the complete data
matrix, which included all the samples and all the wavenumbers,
was modeled. The score plot of PC1 versus PC2 showed a
distinct clustering of the samples that was related to wine style,
as well as individual deviating samples and groups of deviating
samples (Figure 2a). Group A consisted exclusively of two
unwooded dry white wine styles (n ) 23). The cluster located
near the origin of the model (group B) consisted of the dry red,
dry white, off-dry white, and young unbottled wines. Most of
the young wines located at the extreme periphery of group B.

Figure 1. (a) FT-IR spectra of water, glycerol (10 g/L) and a dry white wine in the region 5011−929 cm-1. Spectra were offset for clarity. The absorbance
for all spectra recorded ranged from zero to a maximum value of 2.5. (b) Spectral variation between dry white, low alcohol, and noble late harvest (NLH)
wines in the region 1229−929 cm-1. Vertical lines indicate the wavenumbers, where collectively, more than 85% of the variation in the glycerol content
of the samples was explained.
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Group C located toward the positive end of PC1 as well as
toward the negative end of PC2 and consisted exclusively of
the special late harvest and noble late harvest wines. Six samples
(groups D1, D2, and D3) were located far away from the other
samples and clearly had spectra deviating considerably from
the rest. An analysis of the leverage of these deviating spectra
showed a significant influence on the PCA model (results not
shown), and these samples were therefore considered to be true
outliers. PC1 explained 49% of the variation in the sample set,
which was not unexpected, because all the wavenumbers were
included in the modeling and background noise due to the
absorbance of water would be present. The PC1 loadings plot
showed high loadings for wavenumbers where water is known
to absorb (regions S and R, respectively,Figure 2b). Loadings
were also observed in region S (1500-1000 cm-1), which point
to the contribution of the absorbance of several of the group
wavenumbers of, among other components, alcohol, glycerol,
sugars, and organic acids, which are known to absorb in this
region, to PC1 (1). Region P showed very low loadings and
confirmed the earlier interpretation that this region provided very
little useful information and could contribute to noise in the
spectra.

(ii) PCA Using Selected Wavenumbers.To evaluate the
contribution of the major chemical components (other than
water) to the variation between the different wine styles,
subsequent PCA was done with the two wavenumber regions
where water absorbs strongly (3626-2970 cm-1 and 1716-
1543 cm-1), and the region showing little useful information
(5011-3630 cm-1) was deselected. The outlier samples (n)
6) were also deselected from the original data matrix. Where
appropriate, the interpretation of the score plots was based on
the concentration ranges of the major chemical components of
the wine samples (Table 2). PC1 (explaining 96% of the
variation) seemed to distinguish between samples based on sugar
content (Figure 3a). Samples in group A, which consisted
almost exclusively of noble late harvest wines (RS levels ranging
from 82 to 147 g/L; average 130.2 g/L,Table 2), appeared as
a highly diverse and scattered group. Samples in group B
consisted of special late harvest wines (RS levels ranging from
31 to 47 g/L, average 43.1 g/L). Group C consisted of
commercial dry red and white wines, off-dry white wines, and
the young wines (RS levels collectively ranging from 0.5 to 13
g/L). Some of the young wines and some of the older red wines
that have undergone more than three years of maturation located

Figure 2. (a) PCA score plot, PC1 versus PC2, of the FT-IR spectra of the total set of wines (n ) 329) and all the wavenumbers included. The model
was centered, and the axes cross each other at the origin. (b) PC1 loadings plot. See text (PCA Modeling of Wine Samples) for the assignment of the
symbols.
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on the extreme periphery of group C (Figure 3a). The low
alcohol wines (less than 8% v/v alcohol) located far away from
the rest of the samples and PC2, explaining 3% of the remaining
variation, seemed to distinguish between samples based on the

alcohol content. These results confirmed the earlier observation
that both the RS and alcohol levels were major sources of
variation between the different styles and also suggested that
the late harvest wines would have to be treated as a separate

Table 2. Component Range of Calibration Samplesa

style
glycerol

(g/L)
alcohol
(% v/v)

residual sugar
(g/L)

volatile acidity
(g/L)b

titratable acidity
(g/L)c

dry white 6.81 ± 0.82 12.47 ± 0.71 2.34 ± 1.10 0.36 ± 0.13 6.01 ± 0.59
off-dry white 6.58 ± 0.77 12.48 ± 0.88 5.94 ± 1.99 0.28 ± 0.10 6.05 ± 0.46
low alcohol 3.47 ± 0.53 7.28 ± 0.31 2.04 ± 0.05 0.21 ± 0.06 5.43 ± 0.31
dry red 10.61 ± 1.08 12.93 ± 0.73 1.75 ± 0.69 0.54 ± 0.14 5.88 ± 0.36
SLHe 6.61 ± 0.87 11.62 ± 0.49 43.14 ± 8.12 0.33 ± 0.12 5.64 ± 0.50
NLHf 15.02 ± 3.82 12.93 ± 1.35 130.19 ± 24.95 0.87 ± 0.27 7.13 ± 0.67
Blanc De Noir 5.60 ± 0.46 12.39 ± 0.80 14.90 ± 9.79 nad 5.86 ± 0.95
young red wines 9.86 ± 0.93 11.01 ± 0.58 4.93 ± 1.17 0.40 ± 0.13 4.77 ± 0.53
young white wines 6.43 ± 0.57 11.08 ± 1.30 4.70 ± 1.34 0.37 ± 0.17 5.61 ± 0.56

a Values given are average ± standard deviation. b Expressed as g/L acetic acid. c Expressed as g/L tartaric acid. d Not available. e Special late harvest wines. f Noble
late harvest wines.

Figure 3. (a) PCA score plot, PC1 versus PC2, of the wine spectra, with the outliers (n ) 6) removed and with the wavenumber regions 5011−2970
and 1716−1543 cm-1 deselected. The model was centered, and the axes cross each other at the origin. (b) PC1 loadings plot. See text (PCA Modeling
of Wine Samples) for the interpretation of the symbols.
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group in the design of sample sets for glycerol calibration. The
PC1 loadings plot (Figure 3b), showed particularly high
loadings for several wavenumbers in the region from 1150 to
950 cm-1, which confirmed the interpretation of the score plot
in Figure 3a, but also pointed to the need to extract the most
pertinent wavenumbers related to the variation in the glycerol
content for the purpose of calibration. The separation of the
samples based on the sugar content was not surprising, because
the largest variation in the chemical composition between the
different wine styles was seen in the RS levels, both in terms
of the range in concentrations and the standard deviation within
each style (Table 2).

(iii) PCA Based on the Glycerol Content of Wine Samples.
To model the relationships between the wine samples on the
basis of their glycerol content, PCA was done using only the
15 filters that collectively explained more than 98% of the
variation in the glycerol content of the samples. The loadings
for the 15 wavenumbers selected were high (loadings plot not
shown). The separation of samples in the score plot of PC1 vs
PC2 (Figure 4) could be interpreted as follows: (i) the samples
clearly separated on the basis of their glycerol content, as would
be expected, and samples with the highest glycerol levels located
toward the negative end of PC1; (ii) the red and white wines
partially separated in two groups, although with overlap between
the two groups; (iii) the older red wines that have undergone
more than three years of maturation as well as some of the young
unbottled wines appeared on the “extreme” periphery of the
clusters shown inFigure 4 and seemed to be spectrally different
from the rest of the samples. These results provided preliminary
evidence that both the maturation period of the wines, as well
as the stage of fermentation, should be taken into consideration
in the design of calibration sets and that these sources of
variation could have implications for the accuracy and robust-
ness of prediction.

Design of Calibration Sets for Glycerol in Wine.The initial
strategy used attempted to establish a single global calibration
model for glycerol in all the wines (excluding the six outlier
samples) in the sample set. For this purpose, the wine spectra

were split in two equal sets, a calibration set and a validation
set, respectively. The selection of samples was random and
aimed at keeping the two sets balanced in term of chemical
composition. A variable selection was performed on the
calibration set (n ) 162) and used to establish a calibration
model. Samples that were poorly predicted included the low
alcohol wine (n) 1, SEP> 2% v/v), several of the special
late harvest and noble late harvest wines (n ) 10, SEP> 0.8
g/L) and some of the young red wines (n ) 6, SEP> 0.9 g/L).
The poorly predicted samples (n) 17) were deselected from
the calibration set and a new variable selection performed on
the calibration set. The validation of this model provided a SEP
value of 0.62 g/L, which was considered unsatisfactory. The
customary approach of subdividing the original calibration set
into subsets (and keeping the same internal subdivision between
the calibration set and the validation set), in an attempt to
improve the SEP, was not further pursued because this procedure
resulted in subdivision of the special and late harvest wines in
groups that were so small in number that it was not possible to
develop a calibration model for these styles. Furthermore, the
clustering of the wines according to the wine style (as observed
with PCA) clearly suggested a subdivision according to wine
style to establish calibration models with acceptable prediction
accuracies. Using this approach, the strategy in the design of
calibration sets was aimed at low SECV or SEP values, but at
the same time keeping the number of calibrations as small as
possible. In the exploratory stages of calibration a “cutoff” level
of ca. 8% v/v alcohol was used to differentiate the “low alcohol”
wines from the wines with higher alcohol levels and a RS level
of ca. 30 g/L to differentiate between samples used for the “wine
calibration” and a “sweet wine calibration”, respectively. The
former set (RS< 30 g/L) consisted of dry red, dry white, off-
dry white, and Blanc De Noir wine styles, as well as the young
wines. The “sweet wine calibration” set (RS 31-147 g/L)
consisted of the special late harvest and noble late harvest styles
(Table 1).

Glycerol Calibration for Wine (RS < 3.0 g/L, Alcohol >
11.6% v/v).No significant gain in terms of accuracy for glycerol
prediction was obtained by separating the red and white wines
into different calibration sets, whereas the inclusion of the young
wines in the original calibration set resulted in an increase in
the SECV (from 0.38 g/L to 0.52 g/L). On the basis of these
results, the red and white wines were not separated for the final
design of the calibration set, but the young unbottled wines were
removed from the original sample set. Decisions regarding the
design of calibration sets should, however, clearly be made in
the context of a particular application. For the quantification of
alcohol, for instance, where very high levels of accuracy are
required, preliminary results indicated that the separation of
white wines and red wines into different calibration sets
improved the accuracy (data not shown). The final calibration
set (n) 135) spanned the glycerol concentration range in the
original sample set and also contained the “extreme” spectral
members (samples that located toward the extreme periphery
of the clusters observed by PCA modeling). Samples that were
unusual in terms of their geographic origin, and some of the
older red wines were also included in the calibration set.

Filters (n ) 15) were selected that collectively explained more
than 98% of the accumulated variation in the glycerol content
of the calibration set. The SECV for the calibration set was
0.38 g/L (Table 3). An independent validation set (n ) 98)
was used to test the predictive accuracy of the calibration model.
These samples were selected to span the glycerol concentration
range, over which predictions in future samples had to be done.

Figure 4. PCA score plot, PC1 versus PC2, of the FT-IR spectra of dry
wines (n ) 284; RS levels < 30 g/L). The 15 most pertinent wavenumbers,
explaining more than 98% of the variation in the glycerol content of the
samples, were used for the modeling.
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The correlation between the glycerol concentrations that were
determined with the reference method and the values predicted
by the glycerol calibration is shown inFigure 5. The SEP value
(0.40 g/L, Table 3) was in agreement with the error for the
reference method for glycerol, SEL) 0.30 g/L. The RPD value
for the glycerol calibration model was 5.6 (SD of the data
set ) 2.22), indicating that the calibration was suitable for
quantification purposes (19). SEP values of 1.32 g/L (6) and
1.13 g/L (12) have been reported for the quantification of
glycerol in dry wine. In comparison, the glycerol prediction with
the calibration established in this study showed an improvement
in accuracy. The establishment of a glycerol calibration with
SEP) 0.49 g/L has also been reported, but the predictive ability
was found to be highly dependent on the sample set used for
the validation (5).

The error of prediction for glycerol in the red wines that have
undergone more than 3 years of aging was in excess of 0.6 g/L
for some of the older wines, and these samples were clearly
predicted less accurately by the model. This result was not
surprising in view of the tendency of these samples to locate
toward the extreme periphery of the red wine cluster in the PCA
score plot (Figure 4). Complex changes occur in the chemistry
of red wines during aging, particularly due to the polymerization
and condensation of the tannins. Recent research on wines that
have been subjected to different aging regimes showed changes
in the chemical composition of tannins that were reflected in
the FT-IR spectra of the samples (16).

Glycerol Determination in Low Alcohol Wines (8% v/v
Alcohol). The initial calibration strategy that was aimed at
developing a global calibration model for all the wine styles
used in this study was not satisfactory, because the SEP value
for the low alcohol wines was> 2% v/v. The sample number
of this wine style was very small (n ) 2), and future efforts
will be directed toward the enlargement of the sample set. More
work is also required to fully characterize these wines in terms
of their spectral properties in the IR range. Very little informa-
tion on the application of FT-IR for the analysis of low alcohol
wines has been reported in the literature. In one study, wines
with alcohol concentrations of 8.5% v/v were included in a
calibration set designed for use with FT-IR, but no information
was provided on the specific prediction error for these samples
(5).

Glycerol Calibration for Sweet Wines (RS 31-147 g/L).
Due to the large spectral variation observed by PCA in the sweet
wines (special late harvest and noble late harvest wines) and
the relatively small sample size (n ) 43, Table 1), the full
sample set was used for calibration purposes. This produced a
SECV of 0.65 g/L (Table 4) when evaluated by cross validation
as described before. The correlation between the glycerol

concentrations that were determined with the reference method
and those predicted by the glycerol calibration for sweet wine
is shown inFigure 6. In a recent study where near-infrared
reflectance spectroscopy was used for the simultaneous deter-
mination of alcohol, glycerol, glucose, and fructose in botrytized
sweet wines, the highest error in the prediction results was found
for the estimation of glycerol (17).

Glycerol Determination in Young Wines.The young wines
were treated as a separate validation set of the glycerol
calibration established for the wines with RS< 30 g/L, and
this resulted in an SEP of 0.85 g/L. A better fit of the data set
was obtained by adjusting the intercept of the original calibra-
tion, and using this strategy, an SEP of 0.43 g/L was obtained.
The average levels of the components listed inTable 2 did not
appear to be significantly different between the young wines
and bottled, commercial dry red, or white wines. It is to be
expected that the stage of the fermentation would have a major
influence on the spectral properties of the samples. In this
respect, the CO2 levels as well as the stage of the malolactic
fermentation have been shown to influence the accuracy of
quantification of various components using FT-IR spectroscopy
(6). This is, however, clearly a situation that should be evaluated
for each specific sample set, and the results presented here
merely serve the purpose of illustrating that the prediction
accuracies for the young wines need monitoring and may, in
some instances, require additional validation.

Interpretation and Classification of Outlier Samples. In
the exploratory stages of PCA, all the wavenumbers were
included in the modeling en lieu of selectivity, and six extreme
outlier samples were identified. These samples (all commercial,
bottled wines) were poorly described by the PCA model and
did not appear to belong to any of the major groups shown in
Figure 2a. The glycerol estimations for these samples, using
the calibrations established in this study, were also poor, and
the SEP values were in excess of 0.8 g/L. In this study, several
strategies were used to interpret the outlier status of these
samples, including (i) a comparison of the component ranges
of the outlier samples to that of similar samples in the sample
set; (ii) an examination of the statistics (mean, maximum,
minimum, and SD) of absorbance over the entire wavenumber
range; and (iii) visual inspection of the spectra. The component
ranges of the outlier samples, as compared to that of similar
types of wines, did not reveal any obvious unusual features.
The outlier status of two of these samples could be ascribed to
poor repeatability (as judged by a large SD between the
absorbance at some wavenumbers of replicate scans), which
could be an indication of poor sample quality or inhomogeneity
in the sample. In the other instances, however, the spectra of
the outlier samples were markedly different from that of similar
wines and the atypical nature of the spectra was confirmed with
repeated scanning of the same wine sample.

For the early detection and classification of the spectral
outliers, the SIMCA application of the Unscrambler Software

Table 3. Regression Statistics for Glycerol Calibration and Validation
in Dry Wine

(a) calibration set (b) validation set

number of factors 7 bias 0.02
number of filters 15 r 0.96
number of samples 135 number of samples 98
SECVa (g/L) 0.38 SEPa (g/L) 0.40
ARa 0.08 ARa 0.08
glycerol range (g/L)b 4.74−14.00 glycerol range (g/L)b 5.46−13.40
average glycerol (g/L)b 8.71 average glycerol (g/L)b 8.92
SELa (g/L) 0.30

a Abbreviations used: SECV, standard error of cross validation; SEP, standard
error of prediction; AR, absolute repeatability; SEL, standard error of laboratory.
b As determined by the reference method.

Table 4. Regression Statistics for Glycerol Calibration in Sweet Wine

number of factors 9
number of filters 15
SECVa (g/L) 0.65
ARa 0.09
number of samples 43
glycerol range (g/L)b 4.74−14.00
average glycerol (g/L)b 8.71

a Abbreviations used: SECV, standard error of cross validation; AR, absolute
repeatability. b As determined by the reference method.
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was used to make two disjoint PCA class-models for “white
wine” and “red wine”. The class-membership of a test set
containing the outliers (n ) 6) was tested at a significance level
of 5%. The classification results are graphically presented in
Figure 7, where the area below the horizontal line delimits
membership of the “white wine” model and the area to the left
of the vertical line delimits membership of the “red wine” model.
The area near the origin of the plot delimits samples showing
membership to both models (3). Results showed a 100%
nonmembership to both models for the outlier samples. The
outlier samples were not investigated further, and future work
will be aimed at enlarging the database of outlier spectra and
to establish a discriminatory PCA calibration on the WineScan
FT120 instrument, to provide a conformity test at the time of
analysis, as well as a warning of suspected outlier samples. Such
samples should then automatically be tested with appropriate
reference methods and subjected to further investigation for the
purposes of quality control. Recently, a quality assurance
software module was made commercially available (18),and

this application can be used as a basis from which to develop
customized calibration models for the purpose of quality control.

From a spectroscopic perspective, wine is a challenging
matrix both in terms of its chemical complexity, as well as in
the variation introduced in the spectra by factors such as style,
process technology, cultivars, and geographic origin. For the
purposes of quality control in the analytical laboratory, the
outlier samples are important and require special attention. Due
to the atypical nature of the spectral properties of these samples,
it is to be expected that the accuracy of prediction in these
samples will be unsatisfactory. Furthermore, if the cause for
the outlier status of these samples could be interpreted, the
appropriate action could be taken, and the decisions on how to
handle similar future samples would be more informed.

This study has shown that PCA provides a powerful tool to
identify the major sources of variation in the FT-IR spectra of
wine samples. The sources of variation identified in this study
included the sugar and alcohol content of the samples, the stage
of the fermentation process, and the maturation period of the
wines. The implications of this variation for the accuracy of
prediction of calibration models were evaluated using glycerol
calibration as a model system and clearly showed that calibration
sets have to be carefully selected in order to design calibration
models that find a balance between robustness and accuracy of
prediction. PCA of the FT-IR spectra also facilitated the early
detection and classification of poorly predicted samples, as well
as a small number of extreme outlier samples in the sample
set. It is our opinion that the successful implementation of FT-
IR for the routine analysis of wine requires an approach that
combines the development of robust calibration models, as well
as the implementation of quality control measures (such as PCA
calibrations or SIMCA models) to enable the early detection
and interpretation of poorly predicted samples and outlier
samples. The latter aspect clearly also involves data manage-
ment, specifically in terms of the interpretation of the reasons
for the poor predictions or outlier status of deviating samples.

ABBREVIATIONS USED

SECV, standard error of cross validation; SEL, standard error
of laboratory; SEP, standard error of prediction; AR, absolute

Figure 5. Regression plot of the comparison between the glycerol content
of an independent validation set (n ) 98; RS levels < 30 g/L) as
determined with the reference method and predicted with the WineScan
FT120 instrument.

Figure 6. Regression plot of the comparison between the glycerol content
of a set of noble late harvest and special late harvest wines (n ) 43; RS
levels ranging from 31 to 147 g/L), as determined with the reference
method and predicted with the WineScan FT120 instrument.

Figure 7. Coomans plot showing the distances of the outlier samples (n
) 6) to the selected models for “red wine” (n ) 30) and “white wine” (n
) 30), respectively.
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repeatability; RPD, ratio of standard deviation of data to standard
error of prediction; PCA, principal component analysis; PLS,
partial least squares; RS, reducing sugar.
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